Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2300680, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461409

RESUMEN

The porous structure of microgels significantly influences their properties and, thus, their suitability for various applications, in particular as building blocks for tissue scaffolds. Porosity is one of the crucial features for microgel-cell interactions and significantly increases the cells' accumulation and proliferation. Consequently, tailoring the porosity of microgels in an effortless way is important but still challenging, especially for nonspherical microgels. This work presents a straightforward procedure to fabricate complex-shaped poly(N-isopropyl acrylamide) (PNIPAM) microgels with tuned porous structures using the so-called cononsolvency effect during microgel polymerization. Therefore, the classical solvent in the reaction solution is exchanged from water to water-methanol mixtures in a stop-flow lithography process. For cylindrical microgels with a higher methanol content during fabrication, a greater degree of collapsing is observed, and their aspect ratio increases. Furthermore, the collapsing and swelling velocities change with the methanol content, indicating a modified porous structure, which is confirmed by electron microscopy micrographs. Furthermore, swelling patterns of the microgel variants occur during cooling, revealing their thermal response as a highly heterogeneous process. These results show a novel procedure to fabricate PNIPAM microgels of any elongated 2D shape with tailored porous structure and thermoresponsiveness by introducing the cononsolvency effect during stop-flow lithography polymerization.

2.
HardwareX ; 17: e00506, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38497030

RESUMEN

Photocatalytic water treatment is considered a promising technique to prevent micropollutants from entering the environment. However, no off-the-shelf UV reactors on lab scale are available to study new processes and photocatalysts. In this study, we present a tubular UV reactor equipped with 30 UV-LEDs, emitting UV light at 367 nm and a total radiant flux of 42 W. The UV reactor has an irradiated length of 300 mm and can host any transparent chemical reactor on the inside with a maximum diameter of 28 mm. The device is optimized for lab experiments with total dimensions of just 334 mm x 193 mm x 172 mm. Besides water treatment, a broad range of other photochemical and photocatalytic experiments can be performed with the reactor. Two identical UV reactors have been built and are successfully used for photocatalytic water treatment experiments. The degradation of methylene blue with TiO2 as photocatalyst was studied to validate the UV reactor. Furthermore, photocatalytic and hybrid processes were conducted in the UV reactor to degrade a broad range of pharmaceutical micropollutants.

3.
Small ; : e2310427, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38386289

RESUMEN

The use of gas diffusion electrodes (GDEs) enables efficient electrochemical CO2 reduction and may be a viable technology in CO2 utilization after carbon capture. Understanding the spatio-temporal phenomena at the triple-phase boundary formed inside GDEs remains a challenge; yet it is critical to design and optimize industrial electrodes for gas-fed electrolyzers. Thus far, transport and reaction phenomena are not yet fully understood at the microscale, among other factors, due to a lack of experimental analysis methods for porous electrodes under operating conditions. In this work, a realistic microfluidic GDE surrogate is presented. Combined with fluorescence lifetime imaging microscopy (FLIM), the methodology allows monitoring of wetting and local pH, representing the dynamic (in)stability of the triple phase boundary in operando. Upon charging the electrode, immediate wetting leads to an initial flooding of the catalyst layer, followed by spatially oscillating pH changes. The micromodel presented gives an experimental insight into transport phenomena within porous electrodes, which is so far difficult to achieve. The methodology and proof of the spatio-temporal pH and wetting oscillations open new opportunities to further comprehend the relationship between gas diffusion electrode properties and electrical currents originating at a given surface potential.

4.
Adv Mater ; 36(4): e2306716, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37565596

RESUMEN

Additive manufacturing techniques continue to improve in resolution, geometrical freedom, and production rates, expanding their application range in research and industry. Most established techniques, however, are based on layer-by-layer polymerization processes, leading to an inherent trade-off between resolution and printing speed. Volumetric 3D printing enables the polymerization of freely defined volumes allowing the fabrication of complex geometries at drastically increased production rates and high resolutions, marking the next chapter in light-based additive manufacturing. This work advances the volumetric 3D printing technique xolography to a continuous process. Dual-color photopolymerization is performed in a continuously flowing resin, inside a tailored flow cell. Supported by simulations, the flow profile in the printing area is flattened, and resin velocities at the flow cell walls are increased to minimize unwanted polymerization via laser sheet-induced curing. Various objects are printed continuously and true to shape with smooth surfaces. Parallel object printing paves the way for up-scaling the continuous production, currently reaching production rates up to 1.75 mm3 s-1 for the presented flow cell. Xolography in flow provides a new opportunity for scaling up volumetric 3D printing with the potential to resolve the trade-off between high production rates and high resolution in light-based additive manufacturing.

5.
Membranes (Basel) ; 13(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37888021

RESUMEN

For steric exclusion chromatography (SXC), hydrophilic stationary phases are used to capture the target molecule in the presence of polyethylene glycol. The influence of the structure and pore size of the stationary phase on the process requirements are not yet well understood. To better understand the SXC process, membranes with different pore sizes that served as a stationary phase were compared for the purification of lentiviral vectors (LVs). A design of experiments (DoE) was performed to assess the combined impact of PEG concentration and membrane pore size on the purification performance. A visualization experiment showed that the LVs were captured on the first membrane layer for a pore size up to 2.2 µm, and for a pore size larger than 2.2 µm, LVs were also partly found on the second and third membrane layers. Moreover, we could observe that increasing membrane pore size requires a higher PEG concentration to achieve comparable LV recoveries. Using five membrane layers as a stationary phase was sufficient to achieve good performance, supporting the visualized capture results. In conclusion, we could show that each stationary phase has its optimal PEG buffer compositions for SXC, depending on the membrane structure and pore size.

6.
ACS Biomater Sci Eng ; 9(8): 4878-4892, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37402206

RESUMEN

In vitro environments that realize biomimetic scaffolds, cellular composition, physiological shear, and strain are integral to developing tissue models of organ-specific functions. In this study, an in vitro pulmonary alveolar capillary barrier model is developed that closely mimics physiological functions by combining a synthetic biofunctionalized nanofibrous membrane system with a novel three-dimensional (3D)-printed bioreactor. The fiber meshes are fabricated from a mixture of polycaprolactone (PCL), 6-armed star-shaped isocyanate-terminated poly(ethylene glycol) (sPEG-NCO), and Arg-Gly-Asp (RGD) peptides by a one-step electrospinning process that offers full control over the fiber surface chemistry. The tunable meshes are mounted within the bioreactor where they support the co-cultivation of pulmonary epithelial (NCI-H441) and endothelial (HPMEC) cell monolayers at air-liquid interface under controlled stimulation by fluid shear stress and cyclic distention. This stimulation, which closely mimics blood circulation and breathing motion, is observed to impact alveolar endothelial cytoskeleton arrangement and improve epithelial tight junction formation as well as surfactant protein B production compared to static models. The results highlight the potential of PCL-sPEG-NCO:RGD nanofibrous scaffolds in combination with a 3D-printed bioreactor system as a platform to reconstruct and enhance in vitro models to bear a close resemblance to in vivo tissues.


Asunto(s)
Pulmón , Andamios del Tejido , Andamios del Tejido/química , Péptidos , Reactores Biológicos , Impresión Tridimensional
7.
Adv Healthc Mater ; 12(20): e2301055, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37434349

RESUMEN

Neural interfaces are evolving at a rapid pace owing to advances in material science and fabrication, reduced cost of scalable complementary metal oxide semiconductor (CMOS) technologies, and highly interdisciplinary teams of researchers and engineers that span a large range from basic to applied and clinical sciences. This study outlines currently established technologies, defined as instruments and biological study systems that are routinely used in neuroscientific research. After identifying the shortcomings of current technologies, such as a lack of biocompatibility, topological optimization, low bandwidth, and lack of transparency, it maps out promising directions along which progress should be made to achieve the next generation of symbiotic and intelligent neural interfaces. Lastly, it proposes novel applications that can be achieved by these developments, ranging from the understanding and reproduction of synaptic learning to live-long multimodal measurements to monitor and treat various neuronal disorders.


Asunto(s)
Neuronas , Semiconductores
8.
J Hazard Mater ; 458: 131987, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37421862

RESUMEN

Electro-Fenton (EF) represents an eco-friendly and cost-effective advanced oxidation process that can remove highly persistent and hazardous pharmaceuticals, e.g., contrast media agents, from water bodies. However, up to date, EF modules incorporate a planar carbonaceous gas diffusion electrode (GDE) cathode containing fluorinated compounds as polymeric binders. Here, we introduce a novel flow-through module that deploys freestanding carbon microtubes (CMT) as microtubular GDEs, omitting any risks of secondary pollution by highly-persistent fluorinated compounds (e.g., Nafion). The flow-through module was characterized for electrochemical hydrogen peroxide (H2O2) generation and micropollutant removal via EF. H2O2 electro-generation experiments illustrated high production rates (1.1 ± 0.1-2.7 ± 0.1 mg cm-2 h-1) at an applied cathodic potential of - 0.6 V vs. SHE, depending on the porosity of CMTs. Diatrizoate (DTZ), as the model pollutant, with a high initial concentration of 100 mg L-1 was successfully oxidized (95-100 %), reaching mineralization (TOC-total organic carbon removal) efficiencies up to 69 %. Additionally, Electro-adsorption experiments demonstrated the capability of positively charged CMTs to remove negatively charged DTZ with a capacity of 11 mg g-1 from a 10 mg L-1 DTZ solution. These results reveal the potential of the as-designed module to serve as an oxidation unit coupled with other separation techniques, e.g., electro-adsorption or membrane processes.

9.
Adv Healthc Mater ; 12(20): e2301030, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311209

RESUMEN

Recreating human tissues and organs in the petri dish to establish models as tools in biomedical sciences has gained momentum. These models can provide insight into mechanisms of human physiology, disease onset, and progression, and improve drug target validation, as well as the development of new medical therapeutics. Transformative materials play an important role in this evolution, as they can be programmed to direct cell behavior and fate by controlling the activity of bioactive molecules and material properties. Using nature as an inspiration, scientists are creating materials that incorporate specific biological processes observed during human organogenesis and tissue regeneration. This article presents the reader with state-of-the-art developments in the field of in vitro tissue engineering and the challenges related to the design, production, and translation of these transformative materials. Advances regarding (stem) cell sources, expansion, and differentiation, and how novel responsive materials, automated and large-scale fabrication processes, culture conditions, in situ monitoring systems, and computer simulations are required to create functional human tissue models that are relevant and efficient for drug discovery, are described. This paper illustrates how these different technologies need to converge to generate in vitro life-like human tissue models that provide a platform to answer health-based scientific questions.


Asunto(s)
Células Madre , Ingeniería de Tejidos , Humanos , Descubrimiento de Drogas , Sistemas de Liberación de Medicamentos , Materiales Biocompatibles/farmacología
10.
Biotechnol Bioeng ; 120(5): 1269-1287, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36705321

RESUMEN

Bioreactors are the operative backbone, for example, for the production of biopharmaceuticals, biomaterials in tissue engineering, and sustainable substitutes for chemicals. Still, the Achilles' heel of bioreactors nowadays is the aeration which is based on intense stirring and gas sparging, yielding inherent drawbacks such as shear stress, foaming, and sterility concerns. We present the synergistic combination of simulations and experiments toward a membrane stirrer for the efficient bubble-free aeration of bioreactors. A digital twin of the bioreactor with an integrated membrane-module stirrer (MemStir) was developed with computational fluid dynamics (CFD) studies addressing the determination of fluid mixing, shear rates, and local oxygen concentration. Usability of the MemStir is shown in a foam-free recombinant production process of biosurfactants (rhamnolipids) from glucose with different strains of Pseudomonas putida KT2440 in a 3-L vessel and benchmarked against a regular aerated process. The MemStir delivered a maximal oxygen transfer rate (OTRmax ) of 175 mmol L-1 h-1 in completely foam-free cultivations. With a high space-time yield (STY) of 118 mgRL L-1 h-1 during a fed-batch fermentation, the effectiveness of the novel MemStir is demonstrated. Simulations show the generic value of the MemStir beyond biosurfactant production, for example, for animal cell cultivation.


Asunto(s)
Reactores Biológicos , Pseudomonas putida , Animales , Fermentación , Glucosa , Oxígeno
11.
Small ; 18(49): e2204012, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36253147

RESUMEN

Utilizing carbon dioxide (CO2 ) as a resource for carbon monoxide (CO) production using renewable energy requires electrochemical reactors with gas diffusion electrodes that maintain a stable and highly reactive gas/liquid/solid interface. Very little is known about the reasons why gas diffusion electrodes suffer from unstable long-term operation. Often, this is associated with flooding of the gas diffusion electrode (GDE) within a few hours of operation. A better understanding of parameters influencing the phase behavior at the electrolyte/electrode/gas interface is necessary to increase the durability of GDEs. In this work, a microfluidic structure with multi-scale porosity featuring heterogeneous surface wettability to realistically represent the behavior of conventional GDEs is presented. A gas/liquid/solid phase boundary was established within a conductive, highly porous structure comprising a silver catalyst and Nafion binder. Inoperando visualization of wetting phenomena was performed using confocal laser scanning microscopy (CLSM). Non-reversible wetting, wetting of hierarchically porous structures and electrowetting were observed and analyzed. Fluorescence lifetime imaging microscopy (FLIM) enabled the observation of reactions on the model electrode surface. The presented methodology enables the systematic evaluation of spatio-temporally evolving wetting phenomena as well as species characterization for novel catalyst materials under realistic GDE configurations and process parameters.

12.
MethodsX ; 9: 101814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046738

RESUMEN

Electrokinetic flow phenomena are ubiquitous in electrical systems for desalination, chemical conversion, or mixing at a micro-scale. However, the important features of resulting 3D flow fields are only accessible through cost-intensive numerical simulations. Experimental 2D recording of the chaotic three-dimensional velocity fields developing for example at currents exceeding the limiting current density does not capture the complex 3D structures present in such flow fields. Additionally, numerical 3D studies are limited to dimensions three orders of magnitude smaller as found in real applications and only short run times due to the enormous computational effort. To apply the theoretical knowledge in real-world systems and create the possibility for detailed parameter studies, we present the first experimental method for recording and quantifying the time-resolved velocity field in an electrochemical microfluidic cell in 3D with dimensions found in industrial applications. We utilize this method in a co-submitted paper to record the 3D velocity field of electroconvection at a cation-exchange membrane.•Cell design suitable for simultaneous electrochemical experiments with optical 3D velocity quantification•Method optimized for velocity reconstruction of membrane-to-membrane distances found in industrial cells•Highly adaptable cell design, for optical characterization of electrochemical systems.

13.
Small ; 18(15): e2107508, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35246951

RESUMEN

Today, millimeter-sized nonspherical any-shape particles serve as flexible, functional scaffold material in chemical and biochemical reactors tailoring their hydrodynamic properties and active surface-to-volume ratio based on the particle's shape. Decreasing the particle size to smaller than 100 µm would be desired as it increases the surface-to-volume ratio and promotes a particle assembly based on surface interactions, allowing the creation of tailored self-assembling 3D scaffolds. This study demonstrates a continuous high-throughput fabrication of microscopic 3D particles with complex shape and sub-micron resolution using continuous two-photon vertical flow lithography. Evolving from there, in-channel particle fabrication into a confined microfluidic chamber with a resting fluid enables the precise fabrication of a defined number of particles. 3D assemblies with various particle shapes are fabricated and analyzed regarding their permeability and morphology, representing convective accessibility of the assembly's porosity. Differently shaped particles highlight the importance of contact area regarding particle-particle interactions and the respective hydraulic resistance of an assembly. Finally, cell culture experiments show manifold cell-particle interactions promising applicability as bio-hybrid tissue. This study pushes the research boundaries of adaptive, responsive, and permeable 3D scaffolds and granular media by demonstrating a high throughput fabrication solution and a precise hydrodynamic analysis method for micro-particle assemblies.


Asunto(s)
Hidrodinámica , Microfluídica , Tamaño de la Partícula , Permeabilidad , Porosidad
14.
Sci Rep ; 11(1): 24490, 2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-34966168

RESUMEN

During the first wave of Covid-19 infections in Germany in April 2020, clinics reported a shortage of filtering face masks with aerosol retention> 94% (FFP2 & 3, KN95, N95). Companies all over the world increased their production capacities, but quality control of once-certified materials and masks came up short. To help identify falsely labeled masks and ensure safe protection equipment, we tested 101 different batches of masks in 993 measurements with a self-made setup based on DIN standards. An aerosol generator provided a NaCl test aerosol which was applied to the mask. A laser aerosol spectrometer measured the aerosol concentration in a range from 90 to 500 nm to quantify the masks' retention. Of 101 tested mask batches, only 31 batches kept what their label promised. Especially in the initial phase of the pandemic in Germany, we observed fluctuating mask qualities. Many batches show very high variability in aerosol retention. In addition, by measuring with a laser aerosol spectrometer, we were able to show that not all masks filter small and large particles equally well. In this study we demonstrate how important internal and independent quality controls are, especially in times of need and shortage of personal protection equipment.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Máscaras/estadística & datos numéricos , Aerosoles , Filtración/instrumentación , Alemania , Humanos , Máscaras/normas , Máscaras/tendencias , Respiradores N95/normas , Respiradores N95/estadística & datos numéricos , Exposición Profesional/prevención & control , Pandemias/prevención & control , Equipo de Protección Personal/normas , Control de Calidad , Dispositivos de Protección Respiratoria/normas , SARS-CoV-2/patogenicidad
15.
Membranes (Basel) ; 11(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34564487

RESUMEN

Active layers of ion separation membranes often consist of charged layers that retain ions based on electrostatic repulsion. Conventional fabrication of these layers, such as polyelectrolyte deposition, can in some cases lead to excess coating to prevent defects in the active layer. This excess deposition increases the overall membrane transport resistance. The study at hand presents a manufacturing procedure for controlled polyelectrolyte complexation in and on porous supports by support wetting control. Pre-wetting of the microfiltration membrane support, or even supports with larger pore sizes, leads to ternary phase boundaries of the support, the coating solution, and the pre-wetting agent. At these phase boundaries, polyelectrolytes can be complexated to form partially freestanding selective structures bridging the pores. This polyelectrolyte complex formation control allows the production of membranes with evenly distributed polyelectrolyte layers, providing (1) fewer coating steps needed for defect-free active layers, (2) larger support diameters that can be bridged, and (3) a precise position control of the formed polyelectrolyte multilayers. We further analyze the formed structures regarding their position, composition, and diffusion dialysis performance.

16.
Adv Healthc Mater ; 10(20): e2100898, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34331524

RESUMEN

For successful material deployment in tissue engineering, the material itself, its mechanical properties, and the microscopic geometry of the product are of particular interest. While silk is a widely applied protein-based tissue engineering material with strong mechanical properties, the size and shape of artificially spun silk fibers are limited by existing processes. This study adjusts a microfluidic spinneret to manufacture micron-sized wet-spun fibers with three different materials enabling diverse geometries for tissue engineering applications. The spinneret is direct laser written (DLW) inside a microfluidic polydimethylsiloxane (PDMS) chip using two-photon lithography, applying a novel surface treatment that enables a tight print-channel sealing. Alginate, polyacrylonitrile, and silk fibers with diameters down to 1 µm are spun, while the spinneret geometry controls the shape of the silk fiber, and the spinning process tailors the mechanical property. Cell-cultivation experiments affirm bio-compatibility and showcase an interplay between the cell-sized fibers and cells. The presented spinning process pushes the boundaries of fiber fabrication toward smaller diameters and more complex shapes with increased surface-to-volume ratio and will substantially contribute to future tailored tissue engineering materials for healthcare applications.


Asunto(s)
Microfluídica , Seda , Ingeniería de Tejidos
17.
Sci Rep ; 11(1): 12836, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145324

RESUMEN

During soft matter filtration, colloids accumulate in a compressible porous cake layer on top of the membrane surface. The void size between the colloids predominantly defines the cake-specific permeation resistance and the corresponding filtration efficiency. While higher fluxes are beneficial for the process efficiency, they compress the cake and increase permeation resistance. However, it is not fully understood how soft particles behave during cake formation and how their compression influences the overall cake properties. This study visualizes the formation and compression process of soft filter cakes in microfluidic model systems. During cake formation, we analyze single-particle movements inside the filter cake voids and how they interact with the whole filter cake morphology. During cake compression, we visualize reversible and irreversible compression and distinguish the two phenomena. Finally, we confirm the compression phenomena by modeling the soft particle filter cake using a CFD-DEM approach. The results underline the importance of considering the compression history when describing the filter cake morphology and its related properties. Thus, this study links single colloid movements and filter cake compression to the overall cake behavior and narrows the gap between single colloid events and the filtration process.

18.
Sci Rep ; 11(1): 812, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436943

RESUMEN

Filter cake formation is the predominant phenomenon limiting the filtration performance of membrane separation processes. However, the filter cake's behavior at the particle scale, which determines its overall cake behavior, has only recently come into the focus of scientists, leaving open questions about its formation and filtration behavior. The present study contributes to the fundamental understanding of soft filter cakes by analyzing the influence of the porous membrane's morphology on crystal formation and the compaction behavior of soft filter cakes under filtration conditions. Microfluidic chips with nanolithographic imprinted filter templates were used to trigger the formation of crystalline colloidal filter cakes formed by soft microgels. The soft filter cakes were observed via confocal laser scanning microscopy (CLSM) under dead-end filtration conditions. Colloidal crystal formation in the cake, as well as their compaction behavior, were analyzed by optical visualization and pressure data. For the first time, we show that exposing the soft cake to a crystalline filter template promotes the formation of colloidal crystallites and that soft cakes experience gradient compression during filtration.

19.
Sci Rep ; 10(1): 20043, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33208808

RESUMEN

The filtration performance of soft colloid suspensions suffers from the agglomeration of the colloids on the membrane surface as filter cakes. Backflushing of fluid through the membrane and cross-flow flushing across the membrane are widely used methods to temporally remove the filter cake and restore the flux through the membrane. However, the phenomena occurring during the recovery of the filtration performance are not yet fully described. In this study, we filtrate poly(N-isopropylacrylamide) microgels and analyze the filter cake in terms of its composition and its dynamic mobility during removal using on-line laser scanning confocal microscopy. First, we observe uniform cake build-up that displays highly ordered and amorphous regions in the cake layer. Second, backflushing removes the cake in coherent pieces and their sizes depend on the previous cake build-up. And third, cross-flow flushing along the cake induces a pattern of longitudinal ridges on the cake surface, which depends on the cross-flow velocity and accelerates cake removal. These observations give insight into soft colloid filter cake arrangement and reveal the cake's unique behaviour exposed to shear-stress.

20.
Lab Chip ; 20(2): 285-295, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31802080

RESUMEN

Stop-flow lithography (SFL) has emerged as a facile high-throughput fabrication method for µm-sized anisometric particles; yet, the fabrication of soft, anisometric microgels has not frequently been addressed in the literature. Furthermore, and to the best of the authors' knowledge, no soft, complex-shaped microgels with temperature-responsive behavior have been fabricated with this technology before. However, such microgels have tremendous potential as building blocks and actuating elements in rapidly developing fields, such as tissue engineering and additive manufacturing of soft polymeric building blocks, bio-hybrid materials, or soft micro-robotics. Given their great potential, we prove in this work that SFL is a viable method for the fabrication of soft, temperature-responsive, and complex-shaped microgels. The microgels, fabricated in this work, consist of poly(N-isopropylacrylamide) (pNIPAm), which is crosslinked with N,N'-methylenebis(acrylamide). The results confirm that the shape of the pNIPAm microgels is determined by the transparency mask, used in SFL. Furthermore, it is shown that, in order to realize stable microgels, a minimum threshold of crosslinker concentration of 2 wt% is required. Above this threshold, the stiffness of pNIPAm microgels can be deliberately altered by adjusting the concentration of the crosslinker. The fabricated pNIPAm microgels show the targeted temperature-responsive behavior. Within this context, temperature-dependent reversible swelling is confirmed, even for fractal-like geometries, such as micro snowflakes. Thus, these microgels provide the targeted unique combination of softness, shape complexity, and temperature responsiveness and increase the freedom of design for actuated building blocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...